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The role of packing effects at the liquid-solid interface: 
a model for a surface phase transition 
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Bdtiment F,  4 place Jussieu 7.5230, Paris CCdex 0.5, France 
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Abstract. We present theoretical and computer simulation results for the structure of a hard- 
sphere fluid adsorbed onto a lattice of attractive sites placed on a planar hard wall. It is shown 
that packing effects in the dense fluid may induce a structural phase transition in the adsorbed 
layer. This transition is predicted by a theory which relates the properties of the interface to 
those of a ZD lattice gas with an effective interaction potential. 

1. Introduction 

In recent work [l], it has been predicted that packing effects may induce a structural 
phase transition in the first layer of aliquid adsorbed onto asolid substrate with aperiodic 
structure. The prediction was made for a simple model of localised adsorption in which 
the liquid was represented by a hard-sphere fluid and the solid by a flat surface with 
sticky (i.e. adhesive) adsorption sites placed on a periodic lattice. The theory was based 
on an exact isomorphism between the original three-dimensional ( 3 ~ )  adsorption model 
and a fictitious two-dimensional ( 2 ~ )  lattice gas, and it elucidated how the presence of a 
dense liquid with a hard-core exclusion between the particles originated an effective 
attractive potential in the 2~ lattice gas. Because of this attractive potential, gas-liquid 
condensation, corresponding to a mobile-localised phase transition in the first layer of 
the liquid, could occur for some value of the stickiness of the sites. However, in a 
subsequent Monte Carlo (MC) simulation [2], such a discontinuous behaviour of the 
coverage was not observed. In this simulation, the sticky potential was replaced for 
technical reasons by a constant and negative potential inside a small cylindrical volume 
centred around each site. The correspondence between these two potentials was 
obtained by equating their second virial coefficients. While this new potential retained 
two important characteristics of the sticky potential-attraction of a site was limited to 
the spheres very close to the wall and only one sphere could be adsorbed-the choice of 
the parameters for the lattice and the adsorption potential made in [2] introduced an 
undesirable steric effect: a particle adsorbed on a site could prevent another particle 
from moving onto an adjacent site. Is this effect sufficient to hinder the transition or is 
the theoretical prediction incorrect? We note that in [l] the statistical treatment of 
the lattice gas was only approximate (limitation to pair interactions between nearest 
neighbours (NNS) and mean-field approximation). On the other hand, in the case of 
adsorption onto a structureless solid (mobile adsorption), we have shown recently 
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[3] that such an ‘effective ZD’ theory yields results in reasonable agreement with MC 
simulation and better than those provided by other theoretical approaches (Percus- 
Yevick theory or density functional). 

The aim of the present paper is thus to revisit the problem both theoretically and 
numerically and to find under which circumstances the transition can occur. The paper 
is arranged as follows. In section 2, we extend the theory of [l] to include the more 
realistic potential used in the simulation and we discuss the conditions needed to observe 
the transition. We then verify that these were not realised in the simulation performed 
in [2] .  In section 3, we report our own MC simulation results, now performed with 
theoretically favourable conditions. The main result of our computation is the discon- 
tinuous variation in the fraction of sites occupied and the total adsorption as a function 
of the strength of the site-particle potential. We conclude with a brief discussion of the 
influence of n-body effects in the interface: 

2. Adsorption model and effective ZD theory 

We consider a fluid of hard spheres with hard-core diameter U,  in contact with a reservoir 
at fixed 1, T ,  near a hard wall placed at z = -u/2 (i.e. the centres of the particles are 
limited to the region z > 0). The adsorbing potential is defined by 

O < z < 6  I R - R , I < ~  
elsewhere 

- pu(r> = (I (1) 

where /3 = ( k T ) - l ,  r = ( R ,  z )  denotes the position of a fluid particle and R, = (x,, y,) 
the position of a site on the wall (all sites are equivalent). The sites are placed on a 2~ 
lattice, with NN distance d. We assume that 6 < U,  a U and d 2 U. With these 
conditions, thecharacteristicfunctionofasitex,(r) = 0 ( 6  - z)@(a - IR - Rul) ,  where 
O is the Heaviside step function, verifies that 

We then define the adsorbed layer as the set of molecules having their centres inside the 
potential wells. Quantities of interest to our study are the fraction 8 of sites occupied, 
the total adsorption r with respect to the wall boundary and the surface excess grand 
potential os per unit wall area: os = Qs/A. From thermodynamics we have 

x,(r)xp(r) = 0 if a # p. ( 2 )  

e = - ( i /z)(aos/a&) (3b) 
where P b  is the bulk density and t the density of sites on the surface. 

function of the system given by 
We now develop the same procedure used in [ 1,3] .  We start from the grand partition 

where Hois the Hamiltonianfor E = 0, i.e. the hard-sphere-hard-wall (HS-HW) interface, 
and z the activity of the fluid. Introducing the Mayer function 

fi = e x p [ ~ & ( ~ % , ( r i ) j l -  1 = [exp(pE) - 11(?xe(ri)) ( 5 )  

where (2) has been used, and expanding (4) in powers of exp(Pa) - 1, we find after 
some manipulations that 



Packing effects at the liquid-solid interface 3083 

where Eo and p p ) ( l ,  2, . . . , n)  are respectively the grand partition function and the n- 
particle density in the HS-HW interface. So far, all equations are exact. As in [l, 31, we 
now introduce a first approximation; we assume that the n-particle distribution functions 

g 6") ( r n  = P 6") (rn ) / i i P  0 (2 i 
i 

are independent of z in the region 0 < z < 6: 

This seems reasonable since 6 * o (see, however, the remark after equation 5.11 in [3]). 
g P ) ( r l ,  r 2 ,  . . . , r , )  = g r ) ( R , ,  0;  R2,O;  . . .; R , ,  0) .  ( 7 )  

Then we get 

whereA = m26[exp(/k> - 11, p$" = (1/6)J~po(z)dz,andwr)(Rn)isthen-bodypoten- 
tial of mean force on the surface defined by gp)(R1,O; R 2 , 0 ; .  , ,; R, ,O)  = 
exp[-pwp)(R")]. Therefore, as in [ l ,  31, ;/Eo identifies to the grand partition function 
of a 2D fluid characterised by the fugacity Z2D = Ap$"/xu2 and by the many-body poten- 
tials w p ) ( R " ) .  The 2~ density OZD = (l/Az){d[ln(E/~o)]/d(ln A)} is related to the 'real' 
fraction 8 of sites occupied by the simple relation 

where (3b) has been used. 
However, at this point, a difficulty remains: =/Eo cannot be identified with the grand 

partition function of a 2D lattice gas since particles may move in small disks around the 
sites. Therefore, without any additional assumptions, all the benefit of the sticky case 
[ l ,  41, where results from the 2~ Ising model can be used, is lost. We then introduce 
a generalised Kirkwood superposition approximation for the n-particle distribution 
functions at the HS-HW interface 

OZD = [l - exp(-/3s)]O (9) 

n 

g6")(1,2, . . . , n)  = J J g h 2 ) ( i , j )  (10) 
r < j  

so that we are left only with pairwise interactions in =/E0: 

Then, as we have included in p r  the z-dependence due to the finite value of 6, we try 
to eliminate the R-dependence due to the finite extent of the sites on the surface by 
introducing an average pair distribution function 

If we assume that 

we finally obtain 
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wherewr(R,, R B )  = -kTln[gr(R,, R p ) ] .  Z/E,isnowisomorphictothegrandpartition 
function of a 2~ lattice gas. 

The approximation (13), which affects all terms in Z/ZO beyond the order 2 in A ,  is 
quite unverifiable. However, from the mathematical point of view, it seems all the more 
justified as the spatial extent of the sites is small and the function gh2) varies smoothly 
outside the core. In particular, it becomes exact in the sticky limit [l] or in the ‘Lang- 
muirian’ case when particles adsorbed on different sites do not interact, i.e. 
gh2) (R i ,0 ;R j ,0 )=0  if I R i - R j ) < d - 2 a  andg i2 ) (R i ,0 ;R , ,0 )=1  elsewhere. In this 
case one gets from (11) the simple ‘isotherm’ equation 

A p r  = 62D(1 - 62D)-l. (15) 
We may also remark that the average potential w r ( R n ,  R p )  appears quite naturally 
in the first-order perturbation theory with respect to the Mayer function f ( R ,  R ’ )  = 
exp[-@wh2)(R, R ’ ) ]  - 1. Indeed one then gets from (11) the isotherm 

x [ f ( R ,  R’)O(a - / R  - R ,  i)O(a - IR’ - R B  1 )  dR dR’ i (16) 

which can be written as 

and, expanding again the exponential to first order, one finds that 

= O?.D(l - 62D)-1 exp(g02D B w $ ( R a , R / ? ) )  (18) 

which can be also derived directly from (14) by using the classical mean field (Bragg- 
Williams) approximation. 

On the other hand, if we only consider in (14) the contribution coming from NN sites 
(i.e. if w r ( R , ,  R p )  becomes negligible for pair of particles which are not adsorbed on 
NN sites), we may use the exact results of the 2D Ising model for a qualitative discussion 
of the possibility of liquid-gas condensation in the lattice gas. The critical value of the 
NN interaction potential at fixed Twill of course depend on the type of lattice: for instance 
one has exp[-pwr(d)]I,,,, = gr(d)lcr,t = 3 + 2 q 2  for the square lattice and 3 for the 
triangular lattice [ 5 ] .  Since gb2)( / R  - R’ 1 ; 0; 0) can be obtained with a good accuracy 
using the Plischke-Henderson parametrisation [6] with gb2)(bulk) given by Verlet-Weis 
[7], we now have a way to determine approximately the conditions on p b  and on the 
geometry of the adsorption lattice (d ,  a )  for the existence of the transition. g r  defined 
by (12) can be easily calculated by a 2~ integration 

g r (RmB)  = dx  dygh2)[R& + a2 cos2@) 

+ 2aRep cos(x) cos(y); 0; O][x - 0.5 sin(&)] sin(2.x). (19) 
We first find that in the square lattice no transition can occur at normal liquid density, 
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whatever the values of d and a, because there are too few NNS. In the triangular lattice, 
which is the one considered in [l] and [2], the largest value of gF(d) for Pb and a fixed, 
is obtained ford  = o + 2a (in the sticky limit (a  = 0) this is a sort of 'epitaxial' condition 
and one reaches the critical value gY(d) = 3 for Pba3 = 0.672). On the other hand, for 
Pb and d fixed, gY(d) is a decreasing function of the site radius a. These results are a 
clear consequence of the steric effects noted in the introduction and therefore they 
invalidate the conclusion of [2]: the spatial extent of the adsorption sites is unfavourable 
to the localisation of the particles. This is because the spatial average in (12) includes 
the hard-core region in which gi*)(R; 0; 0) = 0. Of course, such an effect disappears if 
d > o + 2a. Unfortunately, this condition was never realised in the simulations per- 
formed in [2] and we can verify that gT(d)  never reached the critical value 3. 

Incidentally, we remark that g r ( d )  = 1.05 (i.e. w F ( d )  = 0) for the simulation per- 
formedwithpbo3 = 0.78,d = 1 , l a a n d a  = 0.40~0 thatwemayexpectthattheLangmuir 
or the Bragg-Williams approximations (15) and (18) become valid. Indeed we see in 
figure 1 that the agreement of the MC result with the theoretical prediction is good in the 
full range of variation of PE (note from (9) that OZD identifies with 8 only for large PE 
and that 8 # 0 for PE = 0). For the other cases studied in [2], such an agreement is only 
obtained in the domain of low 8. 

3. Monte Carlo simulations 

3.1. Method 
From the preceding discussion it is clear that, even at a large bulk density, a small size 
for the sites is a necessary condition for observing the transition. On the other hand, if 
the radius a is too small, particles will never be adsorbed after a reasonable number of 
MC steps. Thus we chose the following conditions for our simulation: qb = n/6p,03 = 
0.46, S = 0.10, a = 0.0250 and d = 1.050. These parameters ensure the value 
gY(d)  = 3.6 for the triangular lattice. 

The simulation cell was a parallelepipedic volume with lateral dimensions L, = 16d, 
L, = 8dd3  and standard boundary conditions imposed in the x and y directions. The 
two adsorbing walls were located at z = ? L,/2 and each contained 256 sites. The total 
number of particles was N = 4155 and L, was guessed as in [3] in order to obtain the 
desired bulk density in the central region (-L,/8, L,/8). After the usual initialisation 
procedure [2,3], we started the simulation from two different initial equilibrium con- 
figurations S I  (L ,  = 18.50) and S 2  (L ,  = 180), corresponding respectively to PE = 0 and 
PE = W. We then gradually decreased or increased exp(-PE) to obtain two series of 
configurations from S I  or Sz, respectively (in contrast with [3] we did not find it necessary 
to vary L, with PE, since r remained virtually constant in each thermodynamical branch, 
as we shall see below). No metastability was observed near E = x and we always obtained 
8 ( ~ )  = 1, the expected thermodynamical value (this was not always the case in [2] 
because of the steric effects discussed above). Moreover, the localisation of the particles 
on well defined sites with d = 1.050 hindered the occurrence of the incommensurate 
intrinsic 2~ ordering observed in the non-localised case [3]. For each value of E and the 
two series of configurations, equilibrium was decided to be achieved when the values of 
8 were stable and equal on the two adsorbing planes in the limit of statistical fluctuations. 
A typical equilibration required lo4 trial moves per particle. Averages were then cal- 
culated with 2 x lo4 additional moves per particle. Since the adatoms (those particles 
which are on the sites) are not the only ones having their centres in the range 0 < z < 6, 
we evaluated two different pair distribution functions: the site-site distribution function 



E Kierlik and M L Rosinberg 3086 
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0.8 

0.6 
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0.4 

0.2 

0 1 2 3 

Pc 
Figure 1. The fraction of sites occupied as a func- 
tionofthesitepotentialforp,d = 0.78,6 = 0.20, 
d = 1.10 and a = 0.40. Comparison between MC 
results [2] (0) and the Bragg-Williams approxi- 
mation (18) (-). 

U :  I 
0.1 1 2 3 4 

2 /a 

Figure 2. The normalised density profile p(z ) /p ,  
outside the adsorbed layer ( z  > 6): MC results for 
different values of thesite potential. From bottom 
to top, exp(-PE) = 1,0.05 and0 (the lowestcurve 
remains almost unchanged up to exp(-PE) = 
0.06). 

gss(a, p) ,  obtained by counting the pairs of adatoms, and the in-plane radial distribution 
function g,(R) defined as 

1 -’ j Ip i2) (R’ ,  R”)6( IR’ -RI’/ - R)dR’dR” p(R‘)p(R”) dR‘dR“ 

and obtained by counting all pairs of particles in the region 0 < z < 6. It can be shown 
easily from (8) that in the 2D picture gss(a, /3) can be identified with the pair distribution 
function of the 2~ fluid. Note also that none of these functions describes the structure of 
the whole first layer which is in general broader (see below). Also determined in the 
simulation are the density profile p(z) = (l/L,L,)Jp(R, z )  dR, and the probability P,(l) 
for fixed E of a configuration with 1 occupied sites [2]. 

3.2. Results and discussion 

The MC normalised density profile p(z)/pb outside the adsorbed layer ( z  > 6) is shown 
in figure 2 for several values of E (p(z) decreases steeply between z = 0 and z = 0.10 
and the values inside this layer are too large to be represented on the same scale; one 
has respectively p(o)/pb = 10.3, 14.9 and 17.1 at contact with the wall for exp(-P&) = 
1,0.05 and 0). Results for the thermodynamical quantities 8, r a n d  for the mean square 
fluctuations of 8 are summarised in table 1. Also given in this table are the average 
numbers of particles per unit area in the first and second layers, which we define 
respectively by ml  = Jiop(z) dz and m2 = J:;p(z) dz, where z ~ ( E )  and z ~ ( E )  are the 
locations of the first and second minima in the density profile. 

The main result of our simulation is the sharp variation in 8, r and ml observed near 
PE = 2.9 +- 0.1. This result may be considered as the signature of the first-order transition 
predicted in section 2. As usual, such a first-order transition also appears via the 
occurrence of hysteresis and metastability due to a long relaxation time [8]. Indeed, we 
did not always succeed in reaching equilibrium after only lo4 MC steps; for the same 
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Table 1. Monte Carlo results for the fraction 0 of sites occupied, the fluctuations in 8 ,  the 
total adsorption r and the numbers m, and m2 of particles per unit surface area in the first 
two layers. The estimated errors in ru2, m,u2 and m2u2 are respectively 20.08, 20.02 and 
20.02. 

e ((e2) - To2 m,a2 

1 
0.08 
0.07 
0.06 
0.05 
0.03 
0.02 
0.01 
0 

0.001 
0.015 2 0.002 
0.022 f 0.004 
0.027 2 0.004 
0.66 * 0.01 
0.79 2 0.01 
0.86 f 0.01 
0.93 ? 0.01 
1 

0.0009 
0.013 
0.015 
0.055 
0.026 
0.020 
0.015 
0 

0.36 0.81 
0.35 0.81 
0.35 0.81 
0.35 0.82 
0.54 1.02 
0.56 1.04 
0.55 1.047 
0.56 1.047 
0.58 1.047 

0.8 
0.8 
0.81 
0.81 
0.79 
0.83 
0.83 
0.82 
0.83 

0.1 I I 

'! 

i 
0 2 4 6 0 100 

Pc I 

Figure 3. The fraction of sites occupied as a func- 
tion of the site potential: 0 MC results for equi- 
librium states; 0 MC points which are metastable 
(the arrow indicates the tendency of evolution; 
...., Bragg-Williams approximation (18) with NN 
restriction; - , Langmuir isotherm (20). 

Figure 4. The MC probability P,(l) of finding 1 sites 
occupied. From left to right, exp(-PE) = 0.06, 
0.05 and0.02. 

value of E ,  we found that the two series of configurations SI and S2 gave different results 
for 6 in a significant domain of P E .  In this region, we thus performed much longer runs 
(about 5 x lo4 moves per particle) in order to eliminate the metastable states. To save 
computation time we occasionally stopped the calculation when a clear tendency towards 
an equilibrium state appeared. For P E  = 3, we found that the series S I  remained locked 
at a low value of 6-which we believe to be metastable since the values for the two planes 
were not equal-while S.* reached its equilibrium value in the dense phase. All the 
resulting points are indicated in figure 3. 

The fluctuationsin 6given in table 1 present amaximum at the transition, as expected. 
Accordingly, the probability distributions PE( 1) shown in figure 4 lose their nearly 
Gaussian shape near the transition and become flat and broader; in general this is the 
prelude to the appearance of two maxima. However, we never observed definite proof 
of the existence of a first-order transition in a simulation: the oscillation of metastable 
states between the two thermodynamical branches. 
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t 

( a )  ( b )  

Figure 5. Snapshots of particle configurations: ( ( a )  adsorbed atoms; (b )  off-site atoms) in 
the region C-0.10 from the wall (point 1 in figure 3): x ,  centres of the sites. 

We note in table 1 that the variation in r at the transition is primarily due to the 
variation in the number of particles in the first layer, since m2 remains almost constant 
in the full range of variation in P E .  Moreover, although 8 changes significantly with PE 
in each phase, r and m l  remain constant. A possible interpretation of these data and of 
the mechanism of the transition can be offered as follows. 

Let us first consider the evolution along the upper branch. When E = =, all the 
particles in the first layer are confined by the external field of the sites; the value 
m, = 1 . 0 4 7 ~ - ~  corresponds precisely to the completely filled lattice (2/v3d-2).  As 
E is reduced, particles may leave their sites and 8 decreases but, because of a 
second layer which is well localised at z = a (figure 2), they cannot move away 
from the wall and the first layer remains complete. This picture is confirmed by 
the ‘snapshots’ shown in figure 5 which represent the instantaneous configurations 
of the particles having their centres in the range 0 < z < 0. la; we clearly see that 
most off-site particles stay very close to the sites and are likely to make only 
oscillatory moves around them. Another confirmation is given by the radial in- 
plane distribution function shown in figure 6; we observe that g,(R) takes significant 
values only near R = R,,, the site-site distances. 

At the transition, the first and second layers are not so well defined, as seen 
in figure 2, and vertical displacements become possible for the adatoms. Therefore, 
when a particle moves away from the wall, the hole created in the first layer is 
no longer filled by particles of the second layer. This hole allows nearby adatoms 
to make larger lateral displacements and to leave their sites. These ‘defects’ increase 
their size and ultimately destroy the localised phase. The snapshots in figure 7 
which correspond to a non-equilibrated configuration show how this ‘melting’ of 
the localised phase occurs. 

The mechanism of the transition from the mobile phase may be best understood 
by examining the site-site pair distribution function represented in figure 8. We 
see that the shape of g,,(R,@) changes dramatically as PE increases; the familiar 
oscillatory behaviour which corresponds to the structure of the initial fluid at E = 
0 is replaced by a monotonic curve which does not seem to go to l-at least in 
the limited range of distances which can be investigated in our simulation box. 
Actually, it is the whole scale of the site-site distribution function which has 
changed. We may attribute this behaviour to the formation of ‘clusters’ on the 
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10 

I 

Q - 5  
d; 

0 1 2 3 4 

R / O  

Figure 6. MC in-plane radial pair distribution function g,(R). The upper curve is for 
exp(-PE) = 0.05 and the lower curve for exp(-PE) = 0.07. 

(a i  ( b )  

Figure 7. Same as figure 5 for point 2 in figure 3. 

lattice like that displayed in figure 9. Of course, we see also in the same snapshot 
that most particles in the layer are off site, so that the corresponding radial 
distribution function (figure 6) has almost the usual aspect. This tendency of the 
adatoms to clustering was also observed in the preceding simulation [2] and it 
seems to justify the introduction of an effective attractive potential in the 2~ lattice 
gas. 

4. Discussion and conclusion 

The 2~ effective theory has predicted successfully the existence of a first-order phase 
transition in the adsorbed layer. Can it give us more information? 
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5 
0 

1 2 3 4 

R / o  

Figure 8. MC site-site pair distribution function gSs(Rmp).  From bottom to top, exp(-PE) = 
1,0.08,0.06 and 0.05 (metastable point 3 in figure 3). The lines are only a guide for the eye. 

(a  I ( b l  

Figure 9. Same as figure 5 for point 4 in figure 3. 

As seen in figure 3, the approximate Bragg-Williams isotherm (18), with the sum- 
mation restricted to NN sites, is able to describe correctly the first points of the lower 
branch. More remarkably, it predicts also that the transition should occur at PE = 3.08, 
which is in very good agreement with the MC result. However, this success should be 
viewed with some caution. In the first place we see in figure 10 that for V b  = 0.46 the 
effective pair potential w y ( R )  has a range of several molecular diameters so that the 
summation in (18) should not be restricted to NN sites; the consequence is a reduction in 
the amplitude of the overall effective potential which goes from - 1.3kT to - 1. IkT.  This 
would displace the transition towards PE = 3.6. Secondly, and more important, the 
quite asymmetrical compositions of the coexistence phases at the transition (figure 3) 
invalidates the introduction of an effective pairwise potential amongst the lattice gas 
particles; in such a case the 2D isotherm 020 as a function of &D should be symmetrical 



Packing effects at the liquid-solid interface 3091 
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: ,  

-1 .5  I 
1 2 3 1, 

R / o  

Figure 10. The effective potential wp'(R).  The points correspond to the site-site distances 
R,. 

about the mean value 8 2 D  = 0.5. Even if we take into account the relation between 8 and 
8 2 D  (equation (9)) we cannot explain the behaviour displayed in figure 3 (incidentally, we 
see also in this figure that, because of (9), (18) does not warrant that 8 remains smaller 
than 1). Such a failure may be the signature that three-body and higher-order inter- 
actions, neglected in the superposition approximation (lo), play a significant role in the 
dense phase. This is not unexpected since the Kirkwood approximation for triplet 
correlations is known to break down at large densities (qb 2 0.4) in the bulk fluid [9]. 
This influence of n-body effects is also confirmed by inspection of the site-site pair 
distribution function g,,(RW8) in the localised phase (as noted before, in the effective 2~ 
theory this function can be identified with the pair distribution function of the lattice 
gas). We find that g,, stays very close to 1 all along the upper branch; for instance g,,(d) = 
1.01 for 8 = 0.86 and g,,(d) = 1.04 for 8 = 0.66. Therefore in this region the 2~ fluid 
behaves as a free lattice gas and it appears that the n-body potentials w f ) ( R " )  in the 
original HW-HS interface have completely balanced the effect of the attractive two-body 
interaction. This overestimation of the effective potential for high coverage was already 
noticed in [3]. 

If there is no net interaction amongst the adatoms in the high coverage region, the 
upper branch of the isotherm should be well represented by the Langmuir equation 
(remember that 8 = 8 2 D  for large P E )  

e/( 1 - 8) = K exp( P E )  (20) 
where K is some unknown parameter. Indeed, as seen in figure 3, we found that the 
choice K = 0.12 provides a good fit of the MC data. We have not been able to explain 
this precise value of K. 

In conclusion, we have shown that the structure of an adsorbed layer at a liquid- 
solid interface is strongly influenced by the presence of the bulk liquid. Correlations in 
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the dense fluid may induce a cooperative behaviour in the layer even if the direct 
interactions between adatoms are only repulsive. This is in contrast with the case of 
adsorbed gas monolayers where the 3~ nature of the interface does not play a major role 
in the properties of the adsorbed phase [lo]. We have tried to incorporate this feature 
in an effective 2~ theory, which has been only partially successful because of our limited 
knowledge of the correlation functions in the inhomogeneous hard-sphere fluid. 
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